

SITE SELECTIVITY IN THE REACTION OF TETRACYANOETHENE WITH TETRACYCLO [5.3.2.0^{2,10}.0^{3,6}]DODECA-4,8,11-TRIENE. A BORDERLINE CASE OF HOMO-DIELS-ALDER REACTION.

M. BURDISSO, A. GAMBA, and R. GANDOLFI*

Dipartimento di Chimica Organica dell'Università,
Viale Taramelli 10, 27100, Pavia, Italy.

R. OBERTI

CNR - Centro di studio per la Cristallografia Strutturale,
Via Bassi 4, 27100 Pavia, Italy

(Received in UK 7 November 1985)

Abstract - Tetracyanoethene reacted with tetracyclo [5.3.2.0^{2,10}.0^{3,6}]dodeca-4,8,11-triene (1) according to two competitive reaction modes, both involving the sole homotropilidene moiety, to give a mixture of adducts 4 and 6. Structure 6 was established by X-ray analysis. Compounds 4 and 6 result from a thermally allowed homocycloaddition and a forbidden [π^2 _s + π^2 _s + π^2 _s + π^2 _s] reaction, respectively. The reaction rate and the 6:4 ratio increased on passing from benzene to nitromethane as reaction medium. The homo-Diels-Alder reaction leading to 4 was shown to be reversible. In methanol compound 4 gave rise to a zwitterion which was trapped by solvent. Reaction mechanisms are discussed. A zwitterion is proposed as intermediate on the pathway to 6 whereas experimental findings do not permit a definitive choice between an ionic two step and a concerted cycloaddition in the formation of 4. The neutral and base catalyzed addition of methanol to the tetracyanoethylene moiety of 4, 6 and related derivatives was also investigated.

INTRODUCTION

Tetracyanoethene (TCNE) and N-substituted triazolindiones (TAD) are uniparticulate electrophiles whose cycloadditions exhibit a marked dipolar character. Recent studies^{1,2} on reactions of TCNE or TAD with polycyclic polyenes, containing both a strained double bond and a homodiene moiety, have revealed that in some instances dipolar cycloaddition at the double bond favourably competes with homo-Diels-Alder cycloaddition. Thus, in acetone PTAD attacks the cyclobutene system of tricyclo [4.2.2.0^{2,5}] deca-3,7,9-triene (Nenitzescu hydrocarbon) 2.3 times faster than the homodiene moiety of the same molecule.^{1a} Moreover in benzene the exo dipolar attack by TCNE on the norbornene like double bond of bicyclo [3.2.1] octa-2,6-diene occurs five times faster than endo attack resulting in a homocycloaddition.²

Tetracyclo [5.3.2.0^{2,10}.0^{3,6}]dodeca-4,8,11-triene (1) (Scheme 1) contains both a strained cyclobutene moiety and a homotropilidene system whose proclivity to enter homodiene cycloaddition is well documented.³⁻⁶ Consequently it seems an ideal model to further explore the competitive nature of the aforementioned diverse reaction modes of strong uniparticulate electrophiles.

A further possibility can be envisaged for the reaction of 1 with TCNE, that is an elec-

trophilic attack at position 8 (or 12) to give the zwitterion 5. This intermediate may subsequently ring close to give: i) the product of a formal $[\pi^2_s + \sigma^2_s + \pi^2_s + \pi^2_s]$ thermally forbidden cycloaddition, i.e. 6; ii) a cyclobutane derivative, i.e. 7; and iii) the product of a thermally allowed $[\pi^2_s + \sigma^2_s + \pi^2_s]$ cycloaddition to the vinylcyclopropane system of 1, i.e. 8. The latter process can obviously occur in a concerted manner as it has been elegantly established for the reaction of TCNE with benzvalene^{7a} and with homofuran and homothiophene.^{7b} The first reaction type has been already reported for the reaction of MTAD with semibullvalene⁸ as well as for the reaction of MTAD, PTAD and TCNE with bullvalene^{9,10} but it is unprecedented for barbaralane^{3,4} and dihydrobullvalene⁴ systems. The second one is a well known reaction of TCNE with vinylcyclopropane derivatives.¹¹

We report here on the site selectivity in the reaction of 1 with TCNE and on the mechanism of the homo-Diels-Alder reaction leading to 4.

RESULTS AND DISCUSSION

Compound 1 reacted sluggishly (≈ 20 days) with excess TCNE in benzene at room temperature to afford the homodiene adduct 4 (Scheme 1) which precipitated from the reaction mixture as a crystalline product. The structure of 4 rests firmly on analytical and spectral data and on its propensity (see below) to enter a thermal cycloreversion reaction to 1 and TCNE. In particular, the presence of two cyclopropyl residues [$\delta(\text{CDCl}_3)$, 1.50(m, 6H)], of an unchanged cyclobutene double bond [δ 6.28(s, 2H)] and of four protons in an allylic or cyclopropylcarbinyl position [δ 3.64(m, 4H)] is safely inferred from ^1H NMR of 4.

A careful analysis of the mother liquors permitted us to detect small amounts of a second adduct, i.e. 6 (Total yield 93%; 4:6 = 25). The temperature independent ^1H NMR spectrum of this adduct [$\delta(\text{CDCl}_3)$, 3.15-3.88 (m, H-1, H-2, H-5, H-6, H-7 and H-10), 5.80 (dd, H-11 and H-14, $J_{11,12}$

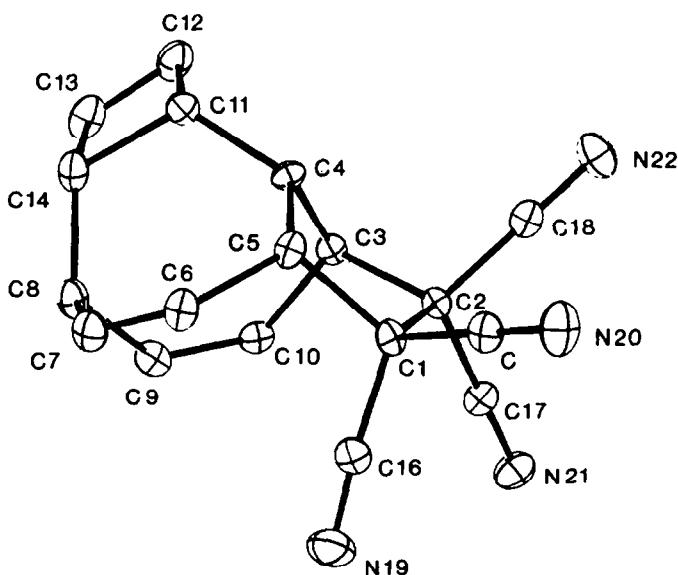
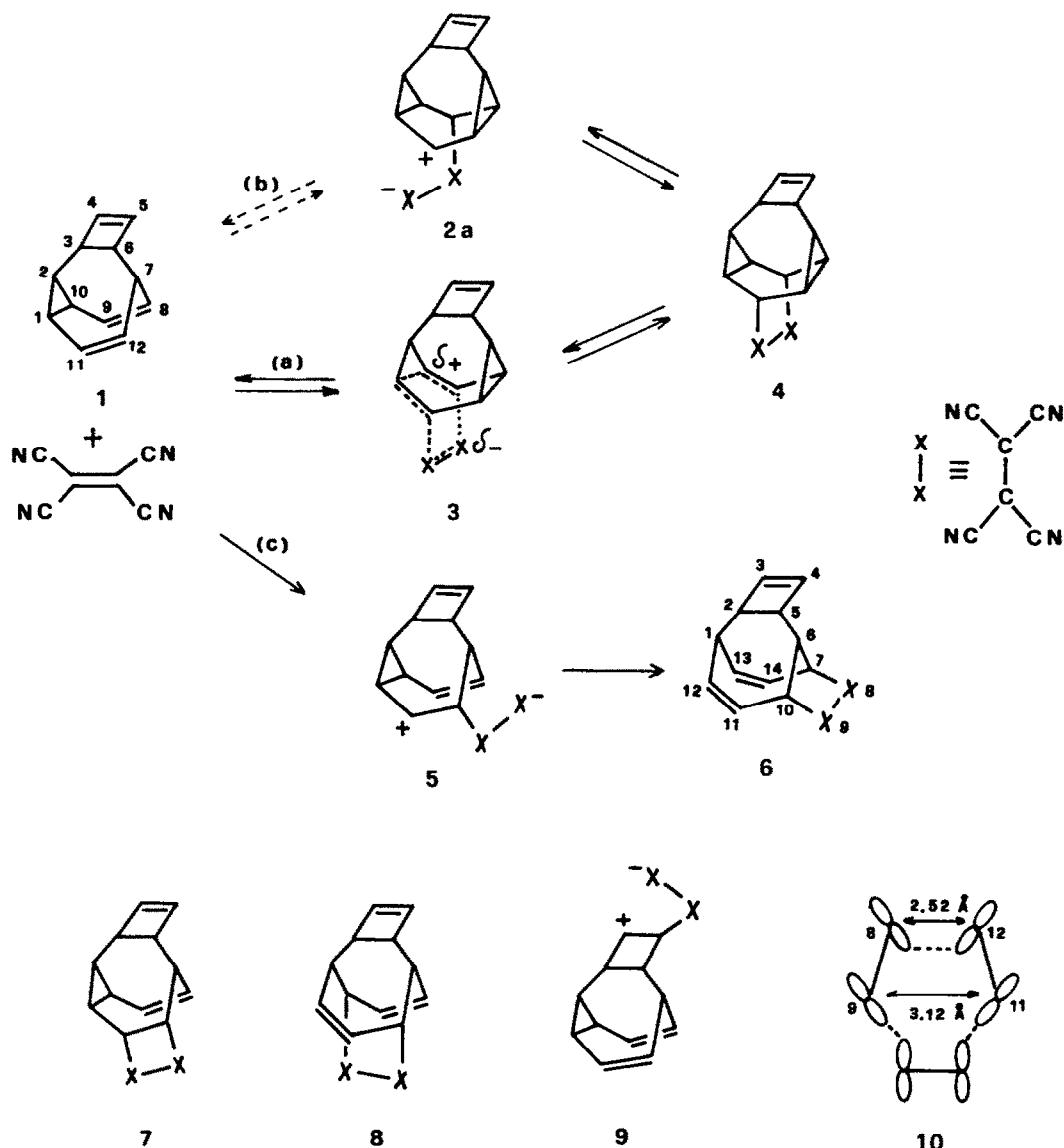



Figure - The crystal structure of 6 showing the atomic numbering used in Tables 1 - 3.

$= J_{13,14} = 11.0\text{ Hz}$, $J_{7,14} = J_{10,11} = 5.8\text{ Hz}$, 6.05 and 6.17 (two d, H-3 and H-4, $J_{3,4} = 3.0\text{ Hz}$), 6.22 and 6.55 (two m, H-12 and H-13, $J_{1,12} = J_{1,13} = 9.0\text{ Hz}$)] clearly indicates that it no longer contains a homotropilidene moiety. The cyclobutane structure 7 was excluded by the absence of high field resonances expected for hydrogens on a cyclopropane ring. A single crystal X-ray analysis (Figure) unequivocally confirmed the structural assignment allowing us to eliminate 8 as a possible alternative.

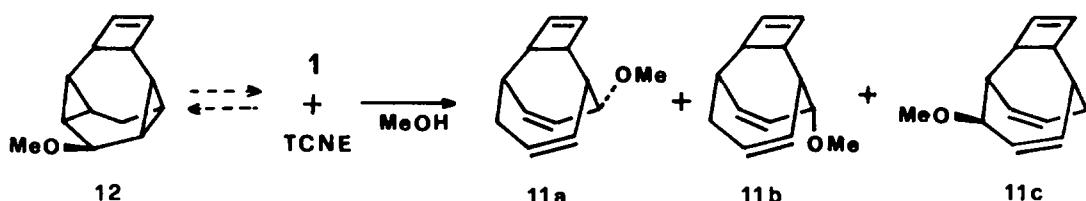
In order to explore the possibility of changing the reaction outcome we decided to study the effect of the polarity of the reaction medium. In fact a relevant solvent effect on product ratios was previously observed by us in the reaction of bullvalene with TCNE.⁹ Thus, in nitromethane compound 1 was found to react readily ($\approx 24\text{ h}$) with excess TCNE at room temperature. Also in this

Scheme 1

case the homodiene adduct **4** was dominant but much more substantial amount of **6** was detected so that the 4:6 ratio dropped down to 2.3 (Total yield, 69%). We succeeded in reversing the 4:6 ratio (4:6 = 45:55) by carrying out the reaction in hexafluoropropanol, a much more polar solvent than nitromethane, but the total yield (38%) was disappointingly low.

Compound **6** was obtained in a pure state (40%) by heating the nitromethane reaction mixture at 90°C during 35 h. Pure **6** could also be prepared (38%) by heating pure **4** in nitromethane in the presence of TCNE. These findings represent good evidence that a reversible homodiene cycloaddition leading to **4** was competing with a slower but irreversible reaction yielding **6**. In fact **6** proved stable under a heating temperature of 90°C in nitromethane or benzene, whereas under the same conditions compound **4** gave **6**, **1** and tarry products.

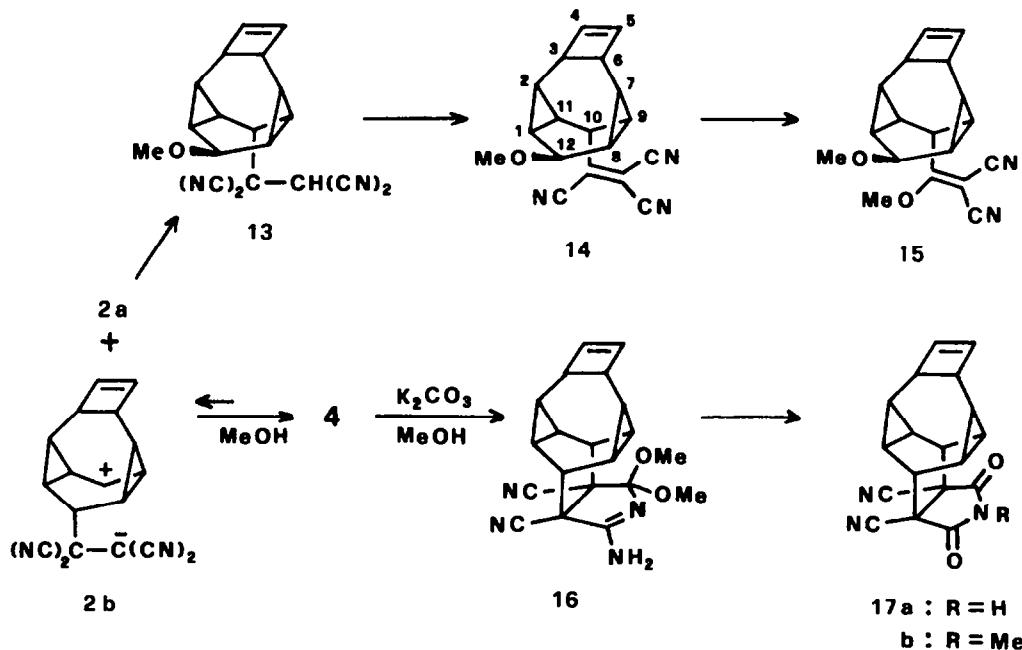
The presence of a $C_{12}H_{12}^{+}$ radical ion (base peak) in the mass spectrum of **6** shows that the $6 \rightarrow 1 + TCNE$ cycloreversion which does not take place under mild heating, is the dominant fragmentation pathway of **6** under electron impact.


It is worth noting that no products that might have arisen from an attack by TCNE at the cyclobutene moiety of **1** were detected in the reaction mixtures. Therefore, we conclude that the reactivity of a homotropilidene system towards electron deficient dienophiles such as TCNE is higher than that of a strained cyclobutene.

The difference between IP of a cyclobutene system condensed to a carbocyclic moiety ($IP_v = 9.42$)¹² and that of an ethano-bridged homotropilidene system ($IP_v = 8.32$)¹³ as well as the stability of the possible intermediate zwitterions **2** and **5**^{14,15} higher than that of **9** can, both, be advanced as a reasonable explanation of the site selectivity found. In particular the cationic centre in **2** is highly stabilized by two cyclopropyl moieties locked in the required bisected conformation.¹⁶ In fact a properly oriented cyclopropyl group is more effective at stabilizing a cationic centre than a double bond or a phenyl substituent.¹⁷ On the other hand the geometrical array of atoms and orbitals of compound **1** (i.e. **10**) is similar to that recently suggested as a very favourable one for concerted homodiene cycloadditions.^{18,19} Consequently the question arises whether we are dealing with a two step or concerted homo-Diels-Alder reaction. The qualitative data cited above show that the reaction rate enhancement on passing from benzene to nitromethane is far from being dramatic:²⁰ a tenfold increase in rate can, roughly, be evaluated for the formation of **4**. Moreover product ratio values indicate that the formation of **6** is accelerated at least ten times more than that of **4**. In our opinion, these findings clearly support the intermediacy of **5** [path(c), Scheme 1] on the pathway to **6** and slightly favour a concerted though not synchronous cycloaddition via a polar transition state [i.e. **3**, path (a)] over a two-step reaction [i.e. path(b)] on the pathway to **4**.

Solvent effects on product ratios even lower than that found by us has been proposed as consistent with a competition between processes via zwitterionic intermediates and concerted reactions: e.g. a 3.5 and 3.0 fold variation of isomer ratios on passing from benzene and pentane to acetonitrile in the reaction of chlorocyanooacetylene with norbornene²¹ and of TCNE with benzvalene,^{7a} respectively.

In the hope of discovering something further about the reaction mechanism we tried trapping experiments by carrying out cycloaddition $1 \rightarrow 4$ and cycloreversion $4 \rightarrow 1$ in methanol.


TCNE reacted with methanol faster than with **1**, the reaction mixture became acidic and compounds **11a - c** (a:b:c = 4:1:6) arising from acid (or TCNE)^{22,23} catalyzed addition of methanol to **1** were isolated. As the ether **12** would be expected not to revert to **1** and MeOH under the reaction condi-

tions,²⁴ this finding indicates that "genuine" two step electrophilic additions to 1 go via carbocations of the type 5 rather than carbocations of the type 2. The attack of electrophiles at positions 8 or 12 of 1 could also be favoured by the fact that largest HOMO coefficients in a divinylcyclopropane system (by analogy with 1,3,5-hexatriene) are located at the end atoms.

TLC analysis of a solution of 4 in methanol (at 40°C) showed that 4 slowly disappeared (3 days), however without affording neither 1 nor compounds 11. Four products of the type 13 (14 upon loss of hydrogen cyanide from 13) could arise from methanolysis (Scheme 2). In fact outside and inside attacks by solvent on dipolar ion 2a and regioisomer 2b are "a priori" possible.²⁰ Column chromatography of the reaction mixture furnished the sole isomer 14 in moderate yields. The precursor of 14, i.e. 13, could not be obtained in a pure state but was detected and fully characterized by ¹H and ¹³CNMR analysis (see Experimental) of the crude reaction mixture.

The presence of the tricyanovinyl group in 14, which gives rise to a very weak absorption at 2235 cm⁻¹ in the IR spectrum, finds support in the UV spectrum ($\lambda_{\text{max}}^{\text{MeOH}}$ 243 nm, log ϵ = 4.00). Furthermore the position and intensity of the absorption band changed with time as a result of the

Scheme 2

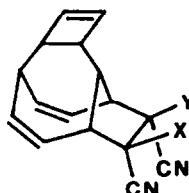
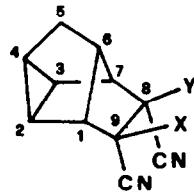
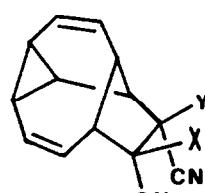
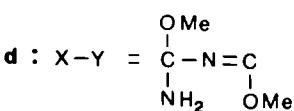
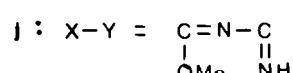
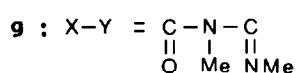
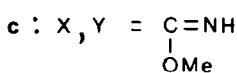
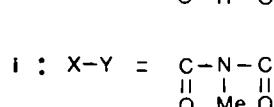
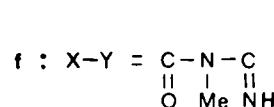
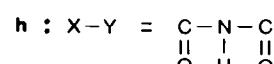
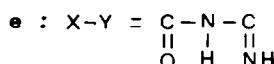
progressive and quantitative replacement of a cyano group by a methoxy group to give **15** [$\lambda_{\text{MeOH}}^{\text{max}}$ 255 nm, $\log \epsilon = 4.15$; ν_{max} 2210 (m, CN) cm^{-1}]. Under the high dilution conditions of the UV spectrum the whole process **4** \rightarrow **13** \rightarrow **14** \rightarrow **15** took place spontaneously. In much more concentrated solutions both **13** and **14** proved more stable. For example traces of **15** could, at most, be detected in the methanolysis reaction of **4** described above after ten days and the synthesis of **15** from **14** on a preparative scale required the presence of base.

NMR spectra are fully consistent with the structure of the carbocyclic moiety of **14** [^{13}C NMR: δ (CDCl_3) 15.1, 19.15 and 21.0 (three d, C-1, C-2, C-7, C-8, C-9 and C-11), 34.05 (d, C-10) 44.3 (d, C-3 and C-6), 55.2 (q, Me), 73.4 (d, C-12), 139.35 (d, C-4 and C-5), additional singlets of very low intensity at 109.3, 113.0 and 153.95 can be attributed to carbon atoms of the tricyanovinyl moiety; ^1H NMR: δ (C_6D_6), 0.24 (t, H-9 and H-11, $J_{1,11} = J_{2,11} = 9.0$ Hz), 0.78 (m, H-2 and H-7, $J_{1,2} = 9.0$ Hz and $J_{2,3} = 3.0$ Hz), 1.10 (dt, H-1 and H-8, $J_{1,12} = 6.5$ Hz), 3.15 (s, Me), 3.45 (d, H-3 and H-6), 3.56 (s, H-10), 4.38 (t, H-12), 5.84 (s, H-4 and H-5)] in particular with the presence in it of a symmetry plane. Moreover in the ^1H NMR spectrum H-10 appears as a singlet whilst H-12 gives rise to a triplet. This is sure proof that H-10 and H-12 bear a different stereochemical relationship with respect to their vicinal cyclopropyl protons as depicted in **14**. Thus an outside attack on the dipolar ion **2a** by methanol is demonstrated. Finally, LIS values are in agreement with an anti relationship between the methoxy group and the cyclobutene ring.

To complete the rationalization of our results it must be assumed, and we propose, that formation and/or trapping of **2b** (Scheme 2) is much slower than that of **2a**. The positive charge in **2a** can experience rear-side nucleophilic solvation by methanol from the very beginning of its coming into being whereas inspection of the outside region of the cationic centre in **2b** shows how that side is shielded by the cyclobutene ring.

But, what about a direct nucleophilic solvent participation in the heterolysis of carbon-carbon bond of **4**, that is a SN_2 one step formation of **13** from **4**? If this were the case the methanolysis would exhibit a rate increase under basic conditions. Indeed compound **4** reacted readily (≈ 30 minutes) with methanol in the presence of potassium carbonate at r.t. but the reaction outcome was completely different from that observed under neutral conditions. Neither **14** nor **15** were detected in the reaction mixture and an 1:2 adduct of **4** and methanol, i.e. **16** (Scheme 2), was isolated in good yields. The strong IR absorption for C = N bond [ν_{max} 3365 and 3120 (s, NH₂), 2230 (w, CN), 1680 (s, C = N)] and the easy hydrolysis under acidic conditions to the imide **17a** [ν_{max} 3240 (s, NH), 2240 (w, CN), 1790 and 1735 (s, CO) cm^{-1}] suggests the involvement of two cis cyano groups to give a product containing an amidine (or imidic ester) function. Accordingly the preferred site of a direct nucleophilic attack (at least by a charged nucleophile) on **4** is a cyano group and not the carbon atom at position 10, which becomes the most reactive one only upon formation of **2a**.

Aiming further at substantiating the peculiar behaviour of **4**, we investigated the reaction of methanol with **6a** (\equiv **6**) and other tetracyanosubstituted hydrocarbons such as **18a** and **19a**. (Scheme 3)












The addition of methanol to **18a** in the presence of potassium carbonate was very fast and exothermic giving only **18b**. The ^{13}C NMR spectrum [**18b** δ (DMSO) 12.7, 14.3 and 15.15 (three d, C-2 C-3 and C-4), 29.95 (t, C-5) 38.15 (d, C-6), 48.75 and 49.55 (two d, C-1 and C-7), 50.1 and 51.2 (two q, OMe), 60.6 and 61.25 (two s, C-8 and C-9), 116.7 (s, MeO-C-OMe), 118.1 and 119.45 (two s, CN), 160.75 (s, H₂N-C=N)] as well as the ^1H NMR spectrum support the cyclic structure **18b** and rule out the open chain symmetric structure **18c**. The chemical shift of NH₂ protons [δ (DMSO) 7.32 (2H, bs which

was exchanged by D_2O] and the small differences of chemical shifts of the two methoxy groups in the NMR [1H NMR : δ (DMSO) 3.27 and 3.35] spectra are consistent with the ketal-amidine structure **18b** whereas they are in contrast with the alternative hemiaminal-imidic ester structure **18d**. Bis-adduct **18b** was selectively hydrolyzed to the iminopyrrolidinone **18e** with MeOH/silicagel whilst under more drastic conditions the imide **18h** was obtained. Compounds **18h** was quantitatively methylated with excess diazomethane to **18i** whilst **18e** gave a mixture of **18f** (major) and **18g**. The symmetry plane in **18h**, **i** is clearly disclosed by their 1H NMR and ^{13}C NMR spectra [e.g. ^{13}C NMR of **18i**: δ (DMSO) 14.36 (d, C-2 and C-3), 15.81 (d, C-4), 26.65, q, Me), 31.2 (t, C-5), 37.65 (d, C-6), 51.65 (d, C-1 and C-7), 55.0 (s, C-8 and C-9), 115.4 (s, CN), 169.4 (s, CO)].

Formation of **18b** (and other 1:2 adducts) involves addition of one molecule of methanol to a CN group followed by ring closure to **18j**^{25,26} and addition of a second molecule of methanol to this cyclic monoadduct.²⁷

The reactions of MeOH with **6a** and **19a** too under basic conditions were exothermic to give bis-adducts **6b** and **19b**, respectively, whose spectroscopic data and chemical reactivity are similar to that described above for **18b**.

Methanol additions under neutral conditions were much slower (2-7 days at 40°C). Reactivity order: **18a** > **19a** > **6a**) and revealed how sensitive these reactions are to base catalysis: in fact longer reaction times were observed when reaction flasks were washed with concentrated hydrochloric acid to remove eventual traces of base. Once again only products resulting from an attack at the cyano groups were detected. The addition of methanol to **6a** and **18a** did not take place under acidic conditions ($pH \approx 3$). Therefore "glass" catalysis seems to be at work under neutral conditions.

6**18****19**

Scheme 3

The series of compounds **6h, i, 18e-i, and 19h,i** were found homogeneous by ¹HNMR and TLC techniques. In our opinion of the two diastereotopic pairs of cyano groups in **6a, 18a** and **19a** that one on the less crowded side of the molecule was preferentially attacked by MeOH.²⁸ Moreover the different crowding felt by reacting cyano groups can be advanced as a reasonable explanation of the higher reaction rate of **18a** than that of **19a** and **6a** which in turn is higher than that of **4**.

As far as compound **4** is concerned we conclude that the lucky coincidence of i) a low reactivity of cyano groups due to steric hindrance under neutral conditions ii) an easy formation of dipolar ion **2a** iii) a nucleophilic attack on **2a** faster than its further rearrangements made our trapping experiments successful.

The heterolysis of carbon-carbon bond in **4** conforms to a SN_1 reaction scheme without direct nucleophilic solvent attack²⁹ but resulting in a zwitterion stabilized by nucleophilic and electrophilic solvation.³⁰ Moreover one can argue that the easy formation of **2** from **4** takes advantage of the fact that cyclopropyl residues can fully exploit their stabilization effect on the developing positive charge with concomitant slight reduction of angle strain. By contrast in the transition state leading to **2** from **1** and TCNE the stabilization of the positive charge is much less than that in **2** and is partly counteracted by increase in angle strain.

CONCLUSION

As well known homo-Diels-Alder reaction is generally considered to go via a symmetry allowed concerted process.³¹ Absence of polarity solvent effects on reaction rate,^{21,32} retention of configuration in the reactions of norbornadiene with *cis* and *trans* disubstituted dienophiles,³³ high negative activation volume in the reaction of norbornadiene with TCNE³² support this view and militate against a stepwise (diradical or ionic) process. Polarity solvent effects on product ratios arising from competition between homo-Diels-Alder and genuine ionic two step cycloadditions has been also interpreted in terms of concertedness^{1b,21} of the former reaction.

However the great influence of solvent polarity on the rate constant which co-occurred with no solvent effect on product ratios led the Authors to propose an ionic mechanism for the homocycloaddition of TCNE to hexamethyl (Dewar benzene).³⁴ This same mechanism was also advanced as a reasonable alternative to the concerted one on speculative basis by other Authors.^{2,4} The results of the present study represent evidence that formation of a stabilized cationic centre can promote a heterolytic reaction in a homocycloadduct to give a zwitterion which is a reasonable intermediate in the cycloaddition-cycloreversion process.

The solvent effect on product ratios, the low enhancement of the homocycloaddition rate induced by increased solvent polarity and the outcome of acid catalyzed methanol addition to **1** support a concerted asynchronous formation of **4**. Concerted cleavage of this adduct is in competition with a side blind alley formation of the zwitterion **2**. This latter pathway is the favoured one in protic polar solvents able to trap **2** [i.e. $1 + \text{TCNE} \rightleftharpoons 4 \rightleftharpoons 2 \rightarrow 13$].

However we cannot claim to have found conclusive evidence against a two step reaction. [i.e. $1 + \text{TCNE} \rightleftharpoons 2 \rightleftharpoons 4$]. We are clearly dealing with a borderline case of homo-Diels-Alder reaction.

EXPERIMENTAL

Melting points are uncorrected. Elemental analyses were made on a Carlo Erba CHN analyzer mod. 1106. IR spectra were measured as Nujol suspensions on a Perkin Elmer 157 spectrophotometer and UV spectra on a Perkin-Elmer 200 spectrophotometer. ¹H and ¹³CNMR spectra were recorded on a Bruker WP80SY spectrometer (operating at 80 and 20.2 MHz) equipped with an Aspect 2000 computer with

tetramethylsilane as internal standard. Mass spectra were measured on a Du-Pont 21-492B using electron impact and chemical ionization modes. Thin layer chromatography was carried out on plates precoated with Silicagel 60 GF₂₅₄ Merck. Spots of all of the compounds could be detected by spraying with 3% chromic oxide in sulphuric acid (50%) followed by heating at 120°C. Compounds 1, 14 and 15 could also be revealed under UV light (254 nm). Column chromatography were performed with Silicagel 60 (70-230 mesh) Merck eluting with cyclohexane-ethyl acetate mixtures. Benzene, nitromethane and methanol were dried and distilled before use. Tetracyanoethene was purified by crystallization from 1,2-dichloroethane.

Reaction of 1 with tetracyanoethene. Compound 1 (0.195 g, 1.25 mmol) in benzene (1 ml) was added to a yellow solution of tetracyanoethene (0.128 g, 1.0 mmol) in benzene (5 ml). The resulting brown-yellow reaction mixture was kept at 21°C for twenty days. The colour slowly faded with time and a crystalline product progressively precipitated from the reaction mixture. The precipitate (0.205 g, 72%) was filtered off and analyzed by ¹HNMR and IR techniques. Only signals due to compound 4 were detected in the ¹HNMR spectrum and the strong and characteristic absorptions of compound 6 were completely absent in the IR spectrum of this product. The mother liquors were concentrated under reduced pressure and the residue purified by column chromatography to give a product (0.060 g, 21%) which was shown to be a mixture (5.0:1) of 4 and 6 on the basis of IR and ¹HNMR analysis. The *R*_F values of compounds 4 and 6 are very similar and we did not manage to separate them satisfactorily by column chromatography. Compound 4 decomposed on attempted GLC (capillary column, at 100°C). Compound 4 was purified as colourless prisms from ethyl acetate, m.p. 185-6°C. (Found: C, 75.4; H, 4.4; N, 19.6. Calc. for C₁₈H₁₂N₄: C, 76.0; H, 4.3; N, 19.7). IR: ν max 2240 (w), 855 (s), 825 (s) and 770 (s) cm⁻¹. Mass spectrum (75 eV, the compound was vaporized at 60°C): m/z 284 (M⁺, 1%), 283 (2%), 156 (C₁₂H₁₂⁺, 10%), 155 (C₁₂H₁₁⁺, 21%), 128 (C₆N₄⁺, 40%), 91 (100%).

The reaction above was repeated under otherwise same conditions with an excess of TCNE (1.25 molar equivs.). After 20 days TLC analysis showed that compound 1 had completely disappeared. Yields and product ratios duplicated that found in the first reaction. A third experiment (with excess TCNE) was carried at 45°C. The reaction went to completion within 150 hrs (89%, ratio 4:6 = 24).

A parallel set of three experiments was carried out in nitromethane. The reactions at 21°C went to completion within 24 hrs and that at 45°C within 6 hrs. In all of the cases the solvent was evaporated off and the residue purified by column chromatography to afford a mixture of 4 and 6 (4:6 = 7:3, 69%).

The formation of small amounts of brown-yellow by-products, in particular in nitromethane, prevented accurate rate measurements by usual photometric techniques.

In order to prepare pure 6, a solution of 1 (0.182 g, 1.17 mmol) and TCNE (0.182 g, 1.42 mmol) in nitromethane (3 ml) was heated at 90°C in a sealed ampoule for 35 hrs. Usual work-up of the resulting dark-brown solution furnished 6 (0.132 g, 40%). Compound 6 crystallized as colourless prisms from ethyl acetate, m.p. 202-3°C. (Found: C, 75.5, H, 4.5; N, 19.6). IR: ν max 2240 (vw), 850 (s), 800 (s) and 755 (s) cm⁻¹. Mass spectrum (75 eV, the compound was vaporized at 50°C): m/z 284 (M⁺, 18%), 283 (M-1⁺, 77%), 257 (50%), 156 (C₁₂H₁₂⁺, 100%), 155 (C₁₂H₁₁⁺, 79%), 128 (C₆N₄⁺, 20%), 91 (78%).

Finally solid TCNE (0.112 g) was added to a stirred mixture of 1 (0.110 g) and hexafluoropropanol (2 ml) under mild cooling with water. There was a slight evolution of heat whilst the reaction mixture turned from yellow to dark-brown. After 3 hrs at r.t. no 1 could be detected by TLC analysis. A mixture (45:55) of 4 and 6 (0.077g, 38%) was the only isolated product.

Cycloreversions of compounds 4 and 6. Compound 4 (0.140 g) in benzene (5 ml) was heated in a sealed ampoule at 90°C for 150 hrs. Column chromatography permitted us to isolate compound 1 (0.010 g) and a mixture (1.3:1.0) of 4 and 6 (0.070 g).

A solution of 4 (0.150 g) and TCNE (0.020 g) in nitromethane (4 ml) was heated at 90°C for 45 hrs. After usual work up of the resulting dark-brown reaction mixture, compound 6 (0.057g, 38%) was isolated in a pure state.

A solution of 6 (50 mg) in nitromethane and benzene was heated at 90° for 45 and 150 hrs, respectively. Compound 6 was then recovered in 85% and 90% yields and no 1 could be detected in the reaction mixtures by TLC analysis or by its characteristic smell.

Reaction of 1 with TCNE in methanol. A deep brown-yellow colour developed at once when TCNE (80 mg) was added to a solution of 1 (80 mg) in methanol (5 ml) and then faded to a light brown-yellow one within twenty five minutes. After 3 days TLC analysis showed that 1 had completely disappeared whilst two products, which did not absorb at 254 nm but were efficiently detected upon spraying plates with CrO₃/H₂SO₄, were present in the reaction solution.

Usual work up and column chromatography afforded 60 mg of the first spot which was shown by ¹HNMR to be a mixture (2:3) of 11a and 11c and 6 mg of the second one 11b.

Products arising from the reaction of TCNE with methanol were not characterized.

To a yellow solution of methyl orange in methanol TCNE (purified once by crystallization and twice by sublimation) was added. The solution turned red at once indicating that the medium had become acidic.

Reaction of 4 with methanol under neutral conditions. A solution of 4 (0.155 g) in anhydrous methanol (25 ml) was kept at 40°C for 3 days. The solvent was evaporated off under reduced pressure to give a residue which was repeatedly dissolved in cyclohexane-benzene and filtered to remove small amounts of tarry products and unreacted 4. Careful evaporation of the filtrate furnished a mixture ($\approx 1:1$) of only two products, i.e. 13 and 14. The presence of 13 was clearly apparent from the ^1H NMR (C_6D_6) spectrum in which a singlet at δ 5.77 and a triplet at δ 4.30 ($J = 6.5$ Hz) attributable to H-4, H-5 and to H-12, respectively, of 13 are visible. Moreover, in addition to the signals of 14, six signals [δ (CDCl_3) 15.6, 18.0 and 18.2 (three d, C-1, C-2, C-7, C-8, C-9 and C-11), 35.6 (d, C-10), 43.6 (d, C-3 and C-6), 72.6 (d, C-12)] were present in the aliphatic region of the ^{13}C NMR spectrum. Their chemical shifts are very similar to the chemical shifts of the ten carbon atoms of the saturated carbocyclic moiety of 14 (see General Part). Two more signals in the same region [δ 29.3 (d) and 46.7 (s)] and two low intensity singlets at δ 107.6 and 110.9 were attributed to the disubstituted and trisubstituted carbon atoms and to cyano groups, respectively, of the tetracyanoethyl moiety of 13. C-4, C-5 and OMe accidentally resonated at the same chemical shift in both compounds. Column chromatography of the above mixture afforded pure 14 (0.066 g, 42%) as the only isolated product. Colourless platelets from cyclohexane, m.p. 133-135°C (Found: C, 74.85; H, 5.1; N, 14.4. Calc. for $\text{C}_{18}\text{H}_{15}\text{N}_3\text{O}$: C, 74.7; H, 5.2; N, 14.5). Mass spectrum: 289 (M^+).

Further experiments showed that the ratio of 13 and 14 was highly dependent on the reaction and work up conditions. For example, a slurry of 4 (0.015 g) and tetra-deuteromethanol (0.6 ml) was left at 30°C for five days, then cooled to -30°C and filtered to remove insoluble unreacted 4. ^1H NMR analysis of the solution showed the presence of 13 [δ 1.45 (6H, m), 3.42 (s, H-10), 3.60 (bs, H-3 and H-6), 4.60 (t, H-12, $J = 6.3$ Hz) 6.23 (s, H-4 and H-5)] along with small amounts ($\leq 10\%$) of 14 (singlet at δ 3.94 due to H-10).

The reaction of 4 with methanol to give 13 and 14 took also place (TLC analysis) under acidic conditions ($\text{pH} \approx 3$).

LIS values of 14 were measured for CDCl_3 solutions using Eu(fod)3 as reagent shift: Δ_M (ppm) 0.13 (H-4 and H-5), 0.19 (H-9 and H-11), 0.27 (H-10), 0.35 (H-2 and H-7), 0.37 (H-3 and H-6), 0.38 (Me), 0.45 (H-1 and H-8), 0.60 (H-12). Although the ability of 14 to coordinate the reagent shift is quite low, the measured values indicate that the preferred coordination site is the methoxy group. In fact the largest shift is experienced by H-12.

Synthesis of 15. The UV spectrum of a solution of 4 (1.73 mg) in methanol (50 ml) showed end absorption only. After 12 days at r.t. this solution exhibited a maximum at 255 nm with an ϵ ($\log \epsilon = 4.11$) value only slightly lower than that expected on the basis of a quantitative conversion 4 \rightarrow 15. A similar result was obtained for a solution of 14 (1.25 mg in 50 ml of methanol) after 30 hrs. Either one solution was evaporated to give 15 (TLC, IR).

On a preparative scale a solution of 14 (0.040 g) in methanol (150 ml) was kept at r.t. for 60 hrs. After that time TLC analysis showed that conversion 14 \rightarrow 15 was $\leq 30\%$. Addition of 2 ml of methanol saturated with potassium carbonate led to the complete disappearance of 14 within two hours. Compound 15 was purified by column chromatography (0.022 g, 54%) [Colourless leaflets from cyclohexane, m.p. 139-141°C. (Found: C, 73.4; H, 6.2; N, 9.4. Calc. for $\text{C}_{18}\text{H}_{18}\text{N}_2\text{O}_2$: C, 73.4; H, 6.2; N, 9.5). Mass spectrum: 294 (M^+). ^1H NMR: δ (CDCl_3) 1.21 (m, cyclopropyl protons), 3.43 (s, MeO), 3.58 (m, H-3 and H-6), 4.03 (s, H-10), 4.35 (s, MeO), 4.46 (t, H-12, $J = 6.3$ Hz), 6.15 (s, 2H, H-4 and H-5)].

Reaction of 4 with methanol under basic conditions. To a slurry of 4 (0.075 g) and methanol (1 ml) methanol (0.5 ml) saturated with potassium carbonate was added. The solid 4 slowly dissolved to give a clear solution within ≈ 30 minutes. Then a new compound, 16, started precipitating and was separated by suction filtration after 2 hrs (0.035 g). The mother liquors were evaporated and the residue rapidly washed with cold methanol/water to give a further crop of 16 (25 mg, total yield 65%). 16: m.p. $\approx 145^\circ\text{C}$ dec. (Found: C, 70.20; H, 6.0; N, 16.4. Calc. for $\text{C}_{20}\text{H}_{20}\text{N}_4\text{O}_2$: C, 68.95; H, 5.8; N, 16.1). ^1H NMR: δ (DMSO) 0.50 - 1.53 (m, 6H, cyclopropyl protons), 3.28 and 3.43 (two s, OMe) 3.00 - 3.70 (m, 4H, H-3, H-6, H-10 and H-12), 6.27 (bs, 2H, H-4 and H-5), 7.38 (bs, 2H which were exchanged by D₂O).

Synthesis of 17a and 17b. Diluted hydrochloric acid (10%, 1.0 ml) was added to a solution of 16 (40 mg) in methanol (2 ml) and the resulting reaction mixture left aside at r.t. for 12 hrs. Then the solution was diluted with water, the precipitated 17a separated by suction filtration [21 mg, 60%; m.p. 230°C dec. (Found: C, 70.8; H, 4.35; N, 13.8. Calc. for $\text{C}_{18}\text{H}_{13}\text{N}_3\text{O}_2$: C, 71.3; H, 4.3; N, 13.9). IR: ν max 3240 (s), 2240 (w), 1795 (m), 1735 (vs)] and transformed into 17b [colourless needles from benzene-petrol ether, m.p. 208-209°C. (Found: C, 69.5; H, 4.8; N, 12.4. Calc. for $\text{C}_{19}\text{H}_{15}\text{N}_3\text{O}_2$: C, 69.9; H, 4.9; N, 12.9). Mass spectrum: 318 [$\text{M}+1$]⁺. ^1H NMR: δ (CDCl_3) 0.80 (m, 2H), 1.15 (m, 1H) 1.58 (m, 3H), 3.15 (s, 3H), 3.65 (m, 4H), 6.23 and 6.30 (two d, 2H, H-4 and H-5, $J = 4.5$ = 3.0 Hz). IR: ν max 2240 (w), 1790 (m) and 1710 (vs) cm^{-1}] by treatment with diazomethane.

Reactions of 18a with methanol. Methanol (0.1 ml) saturated with potassium carbonate was added to an ice cooled slurry of 18a²⁵ [^1H NMR: δ (DMSO) 1.58 (m, 3H, H-2, H-3, H-4), 1.80 (bs, 2H, H-5), 2.52 (bs, 1H, H-6), 3.37 (m, 2H, H-1 and H-7); ^{13}C NMR: δ (DMSO) 12.8 (d, C-2 and C-3) 15.20 (d, C-4), 31.5 (t, C-5), 41.5 (d, C-6), 46.9 (s, C-8 and C-9), 54.7 (d, C-1 and C-7), 112.4 and 113.0 (s, CN) (0.250 g) and methanol (3 ml). Compound 18a dissolved rapidly in an exothermic reaction

and compound **18b** started precipitating as beautiful colourless prisms after \sim 2-3 minutes. The reaction mixture was cooled to -30°C and compound **18b** separated by suction filtration [260 mg, 80%; m.p. \approx 150 $^{\circ}\text{C}$ dec. (Found: C, 63.2; H, 5.7; N, 19.5. Calc. for C₁₅H₁₀N₂O₂: C, 63.4; H, 5.7; N, 19.7). IR: ν max 3380 and 3060 (broad strong bands, NH₂), 2240 (w, CN), 1678 (s, C = N), 1640 (m) cm⁻¹. HNMR: δ (DMSO) 1.41 (m, 3H, H-2, H-3 and H-4), 1.60 (bs, 2H, H-5), 1.75 (bs, 1H, H-6), 2.59 and 2.80 (two bs, H-1 and H-7), 3.27 and 3.35 (tw s, OMe), 7.32 (bs, 2H, NH₂).

TLC analysis of a reaction carried out under neutral conditions (0.250 g of **18a** in 5 ml of methanol at 40 $^{\circ}\text{C}$) showed the disappearance of **18a** after \approx 48 hrs and the formation of **18b** along with small amounts of **18e**. The presence of **18e** as a by-product was also apparent from the IR spectrum of the crude residue after evaporation of the solvent.

A third reaction was conducted in a flask previously washed with concentrated hydrochloric acid and then with methanol. Compound **18a** disappeared after \approx 6 days and once again TLC analysis showed the formation of **18b** along with minor amounts of **18e**.

Finally, to a yellow solution of **18a** (0.250 g) in methanol (5 ml), containing a trace of methyl orange, a solution of anhydrous hydrochloric acid in methanol was added until the colour turned red. Compound **18a** was quantitatively recovered upon evaporation of the solvent after fifteen days at 40 $^{\circ}\text{C}$.

Synthesis of 18e-i. A solution of **18b** (0.550 g) in methanol was adsorbed on Silicagel H (70-230 mesh) Merck (40 g) and kept at 40 $^{\circ}\text{C}$ for 24 hrs in the air. The resulting dry Silicagel was then poured in a column with a fritted glass bed support and eluted with ethyl acetate. Evaporation of ethyl acetate furnished pure **18e** (0.455g, 99%), which started decomposing without melting at \approx 300 $^{\circ}\text{C}$. (Found: C, 65.8; H, 4.1; N, 23.2; Calc. for C₁₃H₁₀N₂O: C, 65.5; H, 4.2; N, 23.5). IR: ν max 3240 (broad band, NH), 2240 (w), 1730 (s), 1680 (s) and 1540 (s) cm⁻¹. HNMR: δ (DMSO) 1.59 (bs, H-2, H-3 and H-4), 1.67 (bs, H-5), 2.86 and 2.87 (two bs, H-1 and H-7), 9.69 (broad signal exchanged by D₂O, 2H, NH), the signal of H-6 is overlapped by the signal of H-5 at δ 1.65.

An excess of diazomethane (ether solution) was added to a solution of **18e** (0.200 g) in methanol (15 ml). There was a brisk evolution of nitrogen, then the solvent was evaporated off and the residue column chromatographed to give **18f** [0.180 g, 85%; colourless prisms from ethyl acetate, m.p. 213-5 $^{\circ}\text{C}$ (Found: C, 66.4; H, 4.9; N 22.4. Calc. for C₁₄H₁₂N₂O: C, 66.65; H, 4.8; N, 22.2). IR: ν max 3280 (m, NH), 2240 (w), 1740 (s, CO), 1655 (vs, C = N). HNMR: δ (CDCl₃) 1.75 (m, 5H, H-2 - H-6), 2.74 and 2.88 (two bs, H-1 and H-7), 3.18 (3H, Me), 8.41 (broad signal exchanged by D₂O, 1H, NH)] and **18g** [0.018 g, 8%; colourless prisms from MeOH, m.p. 170-171 $^{\circ}\text{C}$ (Found: C, 67.6; H, 5.3; N, 21.1. Calc. for C₁₅H₁₄N₂O: C, 67.65; H, 5.3; N, 21.0)].

Compound **18f** did not afford **18g** upon treatment with diazomethane.

Compound **18b** and **18e**, respectively, could be easily hydrolyzed under acidic conditions (100 mg, of **18b** or **18e** 6 ml of MeOH and 2 ml of 10% HCl at r.t. for 12 hrs) to **18h** [\geq 80% yields, colourless platelets from MeOH/H₂O m.p. 308-310 $^{\circ}\text{C}$. (Found C, 64.9; H, 3.8; N, 17.6. Calc. for C₁₃H₉N₃O₂: C, 65.3; H, 3.8; N, 17.6). IR: ν max, 3300 (s, NH), 2240 (w, CN), 1795 (m) and 1738 (vs, CO) cm⁻¹. HNMR: δ (DMSO) 1.60 (bs, 3H, H-2, H-3 and H-4), 1.69 (bs, 2H, H-5) 2.05 (bs, 1H, H-6), 2.79 (bs, 2H, H-1 and H-7), 12.75 (very broad band, exchanged by D₂O, 1H, NH). ¹³CNMR: δ (DMSO) 13.8 (d, C-2 and C-3), 15.25 (d, C-4), 30.8 (t, C-5), 37.4 (d, C-6), 51.0 (d, C-1 and C-7) 55.5 (s, C-8 and C-9), 115.1 (s, CN), 169.05 (s, CO)].

Acidic hydrolysis of **18f** and **18g** produced **18i** [\geq 85% yields; colourless needles from ethyl acetate, m.p. 254-255 $^{\circ}\text{C}$. (Found: C, 66.4, H, 4.5; N 16.7. Calc. for C₁₄H₁₂N₂O₂: C, 66.4; H, 4.4; N, 16.6). IR: ν max 2240 (w, CN), 1795 (w) and 1710 (vs, CO) cm⁻¹. HNMR: δ (DMSO) 1.62 (m, 5H, H-2, H-3, H-4 and H-5), 2.12 (bs, 1H, H-6), 2.81 (bs, 2H, H-1 and H-7), 2.94 (s, Me)].

Synthesis of 6b-i and 19b-i. Methanol saturated with potassium carbonate (0.5 ml) was added to a slurry of **6** (32 mg) and methanol (1 ml) at r.t. The solid dissolved rapidly in a slightly exothermic reaction. After five minutes the solvent was evaporated off and the residue washed with cold methanol/water to give **6b** (36 mg, m.p. \approx 140 $^{\circ}\text{C}$ dec.). Due to its high propensity to include solvents we could not obtain good analytical data for **6b** [I.R.: ν max 3340 and 3150 (broad bands, NH₂), 2240 (w), 1675 (s, C=N) and 1605 (m)]. Compound **6b** was quantitatively converted into **6e** with Silicagel [**6e** started decomposing at \approx 310 $^{\circ}\text{C}$. (Found: C, 71.2; H, 4.3; N, 18.9. Calc. for C₁₈H₁₄N₂O: C, 71.5; H, 4.7; N, 18.5). IR: ν max 3300 (broad, NH); 2240 (w), 1730 (m), 1660 (s) and 1548 (s) cm⁻¹. HNMR: δ (DMSO) 2.90-3.50 (m, 6H), 5.50-6.50 (m, 6H), 9.75 (broad signal exchanged by D₂O, 2H, NH)].

The reaction under neutral conditions took place in \approx 7-10 days at 40 $^{\circ}\text{C}$. Evaporation of methanol allowed us to isolate the hydrolysis product **6e** in quantitative yield. The same product was obtained after \approx 15 days at 40 $^{\circ}\text{C}$ when the reaction was carried out in a flask previously washed with concentrated hydrochloric acid.

Methanol did not add to **6** under acidic conditions (pH \approx 3, 15 days at 40 $^{\circ}\text{C}$).

Treatment of **6e** with diazomethane gave rise to a mixture (\approx 1:1) of two regioisomeric monomethyl derivatives **6f** separated by column chromatography (80%; higher R_F compound m.p. 235-240 $^{\circ}\text{C}$, lower R_F compound m.p. 225-230 $^{\circ}\text{C}$) along with minor amounts of by-products (probably dimethyl derivatives). Compounds **6f** showed very similar IR [**6f** (lower R_F): ν max 3290 (m), 2240 (w), 1750 (s) and 1665 (vs) cm⁻¹] and HNMR [**6f** (lower R_F): δ (CDCl₃) 2.60 (m, 1H, H-6), 3.10-3.50

(m, 5H), 3.25 (s, Me), 5.80 (m, 1H), 5.98 (m, 1H) 6.05 and 6.15 (two d, H-3 and H-4, J 3,4 = 3.0 Hz), 6.46 (m, 1H)] spectra and, both, could be hydrolyzed to 6i [colourless needles from ethyl acetate m.p. 220-225°C. Mass spectrum: 318 [$M+1$]⁺. IR: ν max 2240 (w, CN), 1790 (m) and 1710 (vs) cm⁻¹. ¹H NMR: δ (DMSO) 2.80 (m, 1H, H-6), 3.00 (s, Me), 3.10-3.50 (m, 5H), 5.68 (dd, 2H, H-11 and H-14, J 10,11 = J 7,14 = 5.0 Hz and J 11,12 = J 13,14 = 12.0 Hz), 6.01 and 6.17 (two d, H-3 and H-4, J 3,4 = 3.0 Hz), 6.10 and 6.42 (two m, H-12 and H-13, J 1,12 = J 1,13 = 10 Hz)].

Compound 6i was also prepared (70-80%) from 6b and 6e via 6h [6h: m.p. \approx 250°C dec.; IR: ν max 3250 (s), 2240 (w), 1795 (m) and 1700 (s) cm⁻¹].

The reaction of 19a with methanol produced 19b under basic conditions (exothermic reaction) and 19b along with minor amounts of 19e under neutral conditions (5 days at 40°C) [19b: m.p. \approx 135°C dec. IR: ν max 3340 (s) and 3100 (m), 2240 (w), 1680 (vs) and 1620 (m) cm⁻¹].

Compound 19b (or the mixture 19b + 19e) treated with hydrochloric acid in methanol/water gave 19h [76%; colourless needles from methanol-water, m.p. 306-308°C (Found: C, 69.5; H, 4.0; N, 15.7. Calc. for C₁₆H₁₁N₃O₂: C, 69.3; H, 4.0; N, 15.2) I.R: ν max 3260 (broad strong band), 2240 (w), 1800 (m), 1730 (vs) cm⁻¹] which was quantitatively methylated to 19i [colourless needles from benzene petrolether, m.p. 219-220°C. IR: ν max 2240 (W), 1798 (m) and 1720 (vs) cm⁻¹. ¹H NMR: δ (CDCl₃) 2.00-2.70 (m, 3H), 3.06 (m, 1H), 3.20 (s, Me), 3.43 (m, 1H), 5.65 - 6.25 (m, 4H)] with diazomethane.

Crystal data and X-ray structure refinement. 6: C₁₈H₁₂N₄, colourless crystals, monoclinic, space group P21/n; a = 12.048 (1) c = 7.111 (1) Å; B = 93.97 (1) $^\circ$; V = 1437.7 Å³; Z = 4; D = 1.314 g·cm⁻³; $F(000)$ = 592; μ = 0.760 cm⁻¹. Intensity data were collected on a Philips PW 1100 four-circle diffractometer using the ω scan technique and Mo K α radiation (λ = 0.7107 Å). Two equivalent monoclinic reflections were collected in the ω range 2-20°. They were corrected for Lorentz and polarisation factors and for absorption following the semi-empirical method of North *et al.*³⁷ Then the equivalent pairs were merged. The structure was solved by direct methods, and isotropically refined by a fully-matrix least-squares procedure by using a locally modified version of the program ORFLS.³⁸ 759 reflections with $I \geq 3\sigma$ (1), out of the 1341 independent reflections, were regarded as observed during the refinement. Coordinates for hydrogen atoms were calculated on the basis of geometrical considerations and inserted with an overall thermal factor of 5 Å². The anisotropic refinement was performed by varying positional and thermal parameters of only the non-hydrogen atoms. A new set of coordinates for the H atoms was then calculated and inserted in the least-squares procedure. The final unweighted R index for the observed reflections was 4.0%.³⁹ Scattering factors were those listed in the International Tables for X-ray Crystallography. Atomic coordinates, equivalent isotropic parameters, bond distances and angles for the non-hydrogen atoms are listed in Tables 1-3. The results of the anisotropic refinement are shown in the Figure which depicts the 20% probability ellipsoids.⁴⁰

Tables of anisotropic thermal parameters and torsion angles for non-hydrogen atoms together with final atomic coordinates for hydrogens and a list of observed and calculated structure factors have been deposited at the Cambridge Crystallographic Data Centre.

Table 1. Fractional atomic coordinates and equivalent isotropic temperature factors (Å²) for non hydrogen atoms. E.S.d. in parentheses

ATOM	X/A	Y/B	Z/C	B-EQUIV.
C1	0.8275 (4)	0.2888 (2)	0.8513 (6)	2.65 (13)
C2	0.7987 (4)	0.2424 (2)	1.0395 (6)	2.28 (12)
C3	0.7532 (4)	0.3107 (2)	1.1605 (6)	2.60 (12)
C4	0.6771 (3)	0.3532 (3)	1.0137 (5)	2.59 (13)
C5	0.7452 (4)	0.3628 (2)	0.8377 (5)	2.66 (13)
C6	0.8056 (4)	0.4392 (3)	0.8106 (6)	3.29 (15)
C7	0.8338 (4)	0.4955 (3)	0.9320 (6)	3.72 (15)
C8	0.8103 (4)	0.4976 (3)	1.1405 (6)	3.37 (15)
C9	0.8724 (4)	0.4322 (3)	1.2504 (6)	3.19 (16)
C10	0.8481 (4)	0.3561 (3)	1.2582 (5)	2.78 (16)
C11	0.6158 (4)	0.4271 (3)	1.0742 (6)	3.01 (13)
C12	0.5711 (4)	0.4225 (3)	1.2676 (7)	4.40 (18)
C13	0.6330 (5)	0.4813 (3)	1.3385 (6)	4.09 (17)
C14	0.6839 (4)	0.4991 (3)	1.1546 (6)	3.56 (15)
C15	0.8128 (4)	0.2361 (3)	0.6838 (7)	3.37 (15)
C16	0.9463 (5)	0.3118 (3)	0.8649 (6)	3.36 (15)
C17	0.8974 (4)	0.2005 (3)	1.1247 (6)	2.98 (15)
C18	0.7105 (4)	0.1829 (3)	0.9934 (6)	2.95 (15)
N19	1.0379 (4)	0.3247 (3)	0.8700 (6)	5.61 (16)
N20	0.8013 (4)	0.1959 (2)	0.5551 (6)	5.05 (15)
N21	0.9737 (4)	0.1686 (2)	1.1862 (6)	4.25 (12)
N22	0.6437 (4)	0.1366 (3)	0.9569 (6)	4.82 (15)

Table 2. Bond lengths for non-hydrogen atoms (Å; estimated standard deviation in parentheses).

C1 - C2	1.608 (6)	C4 - C5	1.551 (6)	C11 - C14	1.550 (6)
C1 - C5	1.590 (6)	C4 - C11	1.523 (6)	C12 - C13	1.318 (7)
C1 - C15	1.486 (6)	C5 - C6	1.496 (6)	C13 - C14	1.512 (7)
C1 - C16	1.479 (7)	C6 - C7	1.311 (7)	C15 - N20	1.138 (6)
C2 - C3	1.557 (6)	C7 - C8	1.529 (6)	C16 - N19	1.123 (7)
C2 - C17	1.475 (6)	C8 - C9	1.516 (6)	C17 - N21	1.128 (6)
C2 - C18	1.479 (7)	C8 - C14	1.534 (7)	C18 - N22	1.137 (7)
C3 - C4	1.520 (6)	C9 - C10	1.315 (7)		
C3 - C10	1.505 (6)	C11 - C12	1.513 (7)		

Table 3. Bond angles for non-hydrogen atoms (°; estimated standard deviation in parentheses).

C15 - C1 - C16	105.7 (4)	C4 - C3 - C10	118.7 (4)	C4 - C11 - C14	119.2 (4)
C5 - C1 - C16	113.3 (4)	C3 - C4 - C11	118.1 (3)	C4 - C11 - C12	115.1 (4)
C5 - C1 - C15	112.3 (3)	C3 - C4 - C5	106.0 (3)	C12 - C11 - C14	85.3 (3)
C2 - C1 - C16	109.7 (3)	C5 - C4 - C11	115.9 (3)	C11 - C12 - C13	94.7 (4)
C2 - C1 - C15	110.9 (3)	C1 - C5 - C4	103.4 (3)	C12 - C13 - C14	94.0 (4)
C2 - C1 - C5	105.1 (3)	C4 - C5 - C6	118.8 (3)	C11 - C14 - C13	85.9 (3)
C1 - C2 - C18	109.7 (3)	C1 - C5 - C6	111.9 (4)	C8 - C14 - C13	121.2 (4)
C1 - C2 - C17	111.0 (4)	C5 - C6 - C7	130.0 (4)	C8 - C14 - C11	117.7 (4)
C1 - C2 - C3	101.9 (3)	C6 - C7 - C8	126.8 (4)	C1 - C15 - N20	179.8 (5)
C17 - C2 - C18	108.3 (4)	C7 - C8 - C14	108.4 (4)	C1 - C16 - N19	175.5 (5)
C3 - C2 - C18	110.3 (4)	C7 - C8 - C9	111.4 (4)	C2 - C17 - N21	178.6 (5)
C3 - C2 - C17	115.5 (3)	C9 - C8 - C14	115.8 (4)	C2 - C18 - N22	179.1 (5)
C2 - C3 - C10	110.2 (3)	C8 - C9 - C10	128.6 (4)		
C2 - C3 - C4	110.8 (3)	C3 - C10 - C9	129.8 (4)		

ACKNOWLEDGEMENT.

Financial support from the Ministero della Pubblica Istruzione is gratefully acknowledged.

REFERENCES AND NOTES

1. a) I. Erden and A. de Meijere, *Tetrahedron Letters*, **21**, 1837 (1980); b) W. Adam and O. De Lucchi, *Tetrahedron Letters*, **22**, 3501 (1981); c) W. Adam, O. De Lucchi, K. Peters, E-M Peters, and H. G. von Shering, *J. Am. Chem. Soc.*, **104**, 161 (1982).
2. I. Erden, *Tetrahedron Letters*, **24**, 2047 (1983).
3. H. Musso, *Angew. Chem. Int. Ed.*, **7**, 306 (1968).
4. H.P. Löffler, Th. Martini, H. Musso, and G. Schröder, *Chem. Ber.*, **103**, 2109 (1970).
5. K. Kurabayashi and T. Mukai, *J.C.S. Chem. Comm.*, 1016 (1972).
6. G.I. Fray and R.G. Saxton, *Tetrahedron*, **34**, 2663 (1978).
7. a) M. Christl, E. Brunn, and F. Lanzendorfer, *J. Am. Chem. Soc.*, **106**, 373 (1984) and references cited therein; b) R. Herges and I. Ugi, *Angew. Chem. Int. Ed.*, **24**, 594 (1985).
8. Y.C. Toong, W.T. Borden, and A. Gold, *Tetrahedron Letters*, 1549 (1975).
9. P. Cernuschi, C. De Micheli, and R. Gandolfi, *Tetrahedron Letters*, 3667 (1977).
10. R. Josel and G. Schröder, *Liebigs Ann. Chem.*, 1428 (1980).
11. T. Tsuji and S. Nishida, *Acc. Chem. Res.*, **17**, 56 (1984).
12. P. Bischof and E. Heilbronner, *Helv. Chim. Acta*, **53**, 1677 (1970).
13. P. Bischof, R. Gleiter, E. Heilbronner, V. Hornung, and G. Schröder, *Chem. Ber.*, **53**, 1645 (1970).
14. Carbocations 2 and 5 (only one out of the possible classical forms is depicted in Scheme 1) may arise either from a direct electrophilic attack of TCNE to 1 or from a prior electron transfer step from 1 to TCNE to give a radical ion pair that rapidly collapses to 2 or 5. The difference between the IP of 1 (8.32 eV for dihydrobullvalene)¹⁵ and EA (2.73-2.90 eV) of TCNE indicates that they should be capable of participating in an electron transfer reaction.
15. L.T. Scott, I. Erden, W.R. Brunsvold, T.H. Schultz, K.N. Houk, and M.N. Paddon Row, *J. Am. Chem. Soc.*, **104**, 3659 (1982).
16. A. de Meijere, *Angew. Chem. Int. Ed.*, **18**, 809 (1979).
17. C.F. Wilcox, L.M. Loew, and R. Hoffmann, *J. Am. Chem. Soc.*, **95**, 8192 (1973).
18. R. Yamaguchi, M. Ban, M. Kawanisi, E. Osawa, C. Jaime, A.B. Buda, and S. Katsumata, *J. Am. Chem. Soc.*, **106**, 1512 (1984); R. Yamaguchi, M. Ban, and M. Kawanisi, *J.C.S. Chem. Commun.*, 826 (1984).

19. We assume that the distances between carbon atoms at positions 8 and 12 and carbon atoms at positions 9 and 11 in 1 are similar to the corresponding distances in bullvalene: B. Andersen and A. Marstander, *Acta Chem. Scand.*, 25, 1271 (1971).
20. R. Huisgen, *Acc. Chem. Res.*, 10, 117 and 199 (1977).
21. T. Sasaki, S. Eguchi, M. Sugimoto, and F. Hibi, *J. Org. Chem.*, 37, 2317 (1972).
22. A similar mixture of 11a-c was obtained by dissolving 1 in methanol in the presence of p-toluenesulphonic acid. A full account of acid catalysed additions to 1 will be reported elsewhere. Structures 11a-c were established beyond any doubt by ¹HNMR data and chemical reactions.
23. P.D. Bartlett, A.A.M. Roof, R. Subramanyam, and W.J. Winter, *J. Org. Chem.*, 49, 1875 (1984); P.D. Bartlett and C. Wu, *J. Org. Chem.*, 49, 1880 (1984).
24. M.A. Battiste, J.M. Coxon, G.W. Simpson, and P.J. Steel, *Tetrahedron*, 40, 3137 (1984).
25. F.C. Schaefer and Peters, *J. Org. Chem.*, 26, 413 (1961).
26. F.C. Schaefer, "Nitrile Reactivity" in "The Chemistry of the Cyano Group", (Edited, Z. Rappoport), p. 239; J. Wiley and Sons 1970.
27. A bis-adduct of methanol to a tetracyanoethylene moiety has been reported by R. Huisgen and J.P. Ortega, *Tetrahedron Letters*, 41, 3975 (1978). However the Authors did not establish the structure of the product.
28. Structure 18b is fully supported by preliminary results of a X-Ray analysis: P. Gatti and A. Coda, Università di Pavia, private communication.
29. The inertness to undergo SN_2 displacements seems to be a characteristic feature of nucleofugal groups adjacent to one or two bridgehead atoms: C.A. Grob and E. Lutz, *Helv. Chim. Acta*, 64, 153 (1981).
30. T.W. Bentley, C.T. Bowen, D.H. Morten, and P.V.R. Schleyer, *J. Am. Chem. Soc.*, 103, 5466 (1981).
31. G.N. Fickes and T.E. Metz, *J. Org. Chem.*, 43, 4057 (1978); E. Haselbach and M. Rossi, *Helv. Chim. Acta*, 59, 2635 (1976).
32. G. Jenner and M. Papadopoulos, *Tetrahedron Letters*, 23, 4333 (1982).
33. I. Tabushi, K. Yamamura, Z. Yoshida and A. Togashi, *Bulletin of Chem. Soc. Jap.*, 48, 2922 (1975).
34. H. Iwamura and Y. Tanabe, *Tetrahedron Letters*, 1987 (1976).
35. A.T. Blomquist and Y.C. Meinwald, *J. Am. Chem. Soc.*, 81, 667 (1959).
36. A.C.T. North, D.C. Phillips and F.S. Mathews, *Acta Cryst.*, A 24, 351-359 (1968).
37. P. Main, S.E. Full, L. Lessinger, G. Germain, J.P. Declercq and M.M. Woolfson, "MULTAN 78: a System of Computer Programs for the Automatic Solutions of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
38. W.R. Busing, K.O. Martin, and H.A. Levy, Oak Ridge National Laboratory Report, ORNL-TM-305, (1962).
39. International Tables for X-ray Crystallography (1974). Vol IV. Birmingham, Kynoch Press.
40. C.K. Johnson, ORTEP II. Oak Ridge National Laboratory Report, ORNL-5138 (1976).